Math 2263, Quiz 10

You must show all work for full credit, you have 15 min to finish it.

1. (4 pt) Find the Jacobian of the transformation: $x=4 u+v, y=2 u-v$.

Solution: The Jacobian equals to $\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}=4 \times(-1)-1 \times 2=-6$.
2. (5 pt) Find the image of the set S under the given transformation:

S is the square bounded by the line $u=0, u=1, v=0, v=1 ; x=v, y=u v$.
Solution: The transformation maps the boundary to the boundary. $u=0$ will be mapped to $y=0, v=0$ will be mapped to the point $(0,0), v=1$ will be mapped to $x=1$. For $u=1$, the image will be $x=v, y=v$, which is just the line $x=y$. So the image of S under the transformation is just the triangular region bounded by $x=1, y=0$ and $x=y$.
3. (6 pt) Use the given transformation to evaluate the integral $\iint_{R} x^{2} d A$ where R is the region bounded by the ellipse $9 x^{2}+4 y^{2}=36 ; x=2 u, y=3 v$.

Solution: The Jacobian of the transformation is $2 \times 3=6$. Under this transformation, the region R will be mapped to $S=\left\{(u, v) \mid 36 u^{2}+36 v^{2}=36\right\}=$ $\left\{(u, v) \mid u^{2}+v^{2}=1\right\}$, which is just the region enclosed by unit circle. Our integral is equal to $\iint_{S} 6(2 u)^{2} d A=\iint_{S} 24 u^{2} d A$.
Use the polar coordinates, $u=r \cos (\theta), v=r \sin (\theta)$, then $r \in[0,1], \theta \in[0,2 \pi]$.
The integral will be $\int_{0}^{2 \pi} \int_{0}^{1} 24 r^{3} \cos ^{2}(\theta) d r d \theta=\int_{0}^{2 \pi} 6 \cos ^{2}(\theta) d \theta=\int_{0}^{2 \pi} 6\left(\frac{\cos (2 \theta)+1}{2}\right) d \theta=$ $\int_{0}^{2 \pi} 3 \cos (2 \theta)+3 d \theta=6 \pi$.

